A trio of new and improved cosmological simulation codes was unveiled in a series of presentations at the annual April Meeting of the American Physical Society in Minneapolis. Chaired by the Oak Ridge Leadership Computing Facility’s director of science, Bronson Messer, the session covering these next-generation codes heralds a new era of exascale computational astrophysics that promises to advance our understanding of the universe with models of unprecedented scale and resolution.
Powered by the incoming generation of exascale — a billion-billion floating point operations per second — supercomputers, the updated versions of Cholla, HACC and Parthenon are the culmination of years of work by developers to prepare their codes for exascale’s thousandfold increase from petascale computing speed. With their successful early runs on the OLCF’s Frontier supercomputer, located at the Department of Energy’s Oak Ridge National Laboratory, the codes are ready to explore virtual domains of the cosmos that were previously beyond science’s reach.
“These newly improved astrophysical codes provide some of the clearest demonstrations of the most empowering features of exascale computing for science,” said Messer, a computational astrophysicist, distinguished scientist at ORNL and member of the team that won a 2022 R&D 100 Award for the Flash-X software. “All these teams are simulating an array of physical processes happening on scales ranging over many orders of magnitude — from the size of stars to the size of the universe — while incorporating feedback between one set of physics to others and vice versa. They represent some of the most challenging problems that will be attacked on Frontier, and I expect the results to be remarkably impactful.”